## **Digital Systems**

### Universidad de Guanajuato (FIMEE)

#### D.Phil. Eduardo CABAL-YEPEZ

#### Master of Electrical Engineering

## 1 Introduction

Universidad de Guanajuato (FIMEE)

Master of Electrical Engineering

#### • Transistor Level















CMOS-Inverter



• Gate Level







NAND

-0 Z





• Block or Module Level







### **Digital Systems**

- A digital system uses discrete values to represent information for input, processing, transmission, storage, etc.
- It has several combinational and sequential blocks working together for carrying out all these tasks.

### **Synchronous Digital System**

- Purely synchronous
- One Trigger Edge Synchronization
- Derived Synchronization.

### **Purely Synchronous Digital System**

 In a purely-synchronous digital system, all of its building sequential machines are synchronous in a Moore architecture, with a common clock for all of them, and all its memory elements are identical.

## **One Trigger Edge Synchronization**

 A one trigger edge synchronous system has a Moore architecture, where the memory elements respond to the different trigger edges of a common clock.

### **Derived Synchronization**

 A digital system has *derived synchronization* when its building states machines are synchronous in a Moore architecture, and has multiple clocks derived synchronously from one master clock.

### **Asynchronous Digital System**

 An asynchronous digital system has multiple clock signals not synchronized by a global clock.

### **Microprocessor Architectures**

- Von Neumann Architecture
- Harvard Architecture

### **Von Neumann Architecture**

- Data and programs are stored together in memory
- Follows the following pattern
  - *Fetch*: Instructions and necessary data are obtained from memory.
  - **Decode**: Instructions and data are separated.
  - *Execute*: Instructions are performed, data is manipulated, results are stored

### **Von Neumann Architecture**



### **Harvard Architecture**

- Independent memory for data and instructions.
- Modified Hardware Architecture:
  - Allows words from the instruction memory to be treated as read-only data.

### Instruction Set Architecture (ISA)

- Part of the computer architecture related to programming
  - CISC (Complex Instruction Set Computing)
  - RISC (Reduced Instruction Set Computing)

### CISC

- Each instruction can execute several lowlevel operations in a single instruction.
- Instructions might take long time to execute.
  - Several memory cycles.

### RISC

- Execute small instructions in fast way.
- A RISC chip has:
  - Fewer transistors dedicated to the core logic.
  - General purpose registers.
  - Uniform instruction format.

### **Other ISAs**

- Very Long Instruction Word (VLW)
  - A processor that executes every instruction one after the other.
- Minimal Instruction Set Computing (MISC)
  - Very small number of basic operations.
- Zero Instruction Set Computing (ZISC)
  - Based on pattern matching.
  - Massively hardwired parallel processing.

### **Digital Signal Processing in Hardware**



- 1 Analog signal to digital domain.
- 2 Arithmetic Transformation.
- 3 Back to the analog domain.

## **Digital Signal Processor (DSP)**

- Vehicle for implementing digital-signalprocessing functions.
  - Real-time processing.
  - Separate program and data memories.
  - Special Instructions for SIMD.
  - Process digital signals converted from analog signals.
  - Provide an analog output from the processed digital signal.

# Application Specific Integrated Circuits (ASICs)

- Hard-wired arithmetic logic blocks and state machines.
  - Inflexible.
  - Hardware design at transistor level.
  - High cost.
  - Long time to market.

### Multi core DSPs

- Very-long-instruction-word engines.
- Great deal of parallelism.
- Gain for each added engine, less 100%.
- Difficult to program.
- Application specific DSP.
- More expensive than ASICs

### **Programmable Logic Devices (PLDs)**

- Infinitely customizable.
- Silicon physical-design ready for customization.

## Field Programmable Gate Arrays (FPGAs)

- Array of uncommitted circuits elements.
- Spatial computations.
- End-user programmable.

### **FPGAs vs ASICs & DSPs**

| FPGAs vs ASICs           | FPGAs vs Processors       |
|--------------------------|---------------------------|
| •More power consumption. | •Inflexible.              |
| •Slower.                 | •Slower.                  |
| •Looser.                 |                           |
|                          | •Lower power consumption. |
| •Commercially available. | •Faster.                  |
| •Fast time to market.    | •Tighter.                 |

### **FPGA** architecture

 Flexible, regular programmable architecture surrounded by a perimeter of programmable Input/Output blocks, which are interconnected by a hierarchy of routing channels.

### **FPGA** internal structure



## FPGA Configurable Logic Blocks (CLBs)







## **FPGA technology**

- Antifuse:
  - Configured by burning a set of fuses.
  - Once configured, it can not be altered any more.
- Flash:
  - Can be re-programmed several times.
  - Non-volatile.
- SRAM:
  - Unlimited reprogramming.
  - Very fast configuration
  - Partial configuration
  - Volatile.

# Hardware Description Languages (HDLs)

- Design tool for describing digital systems.
  - CUPL (Universal compiler for programmable logic, Logical Devices).
  - ABEL (Advanced Boolean Expression Language, Data I/O corporation).
  - Verilog (VERIfy LOGic, IEEE standard 1364-2001).
  - VHDL (Very high speed integrated circuit Hardware Description Language, IEEE standard 1076-1993)

## VHDL

- Initiated in 1981 by the US DoD.
- Language with wide range capability
- Independent of technology or design methodology.
- Development of baseline language (1983-85).
- All rights transferred to IEEE (1986).
- Publication of the IEEE standard (1987)
- Revised Standard named VHDL 1076-1993 (1994)

### **VHDL features**

• Is concurrent i.e. all operations are executed simultaneously.

| C-code segment   | x=2;    |
|------------------|---------|
| x=2;             | y=8;    |
| y=3*x+2;         | z=10;   |
| z=x+y;           |         |
| VHDL-description | x<='1'; |
| segment          | y<='1'; |
| X<=Z;            | z<='1'; |
| y<='1';          |         |
| z<=Y XOR '0';    |         |

## **VHDL features (cont.)**

Synthesis depends on the used structures.
 i.e. the final implementation depends on the inferred structure.



## **VHDL features (cont.)**



### **VHDL elements**

- 1. Library declarations.
- 2. Port declarations.
- 3. Architecture description.
- 4. Test Bench.

### **VHDL library declaration.**

Library IEEE; use IEEE.std\_logic\_1164.all; use IEEE.std\_logic\_arith.all; use IEEE.std\_logic\_unsigned.all;

### **VHDL port declaration**

### entity Black\_box is

port(

- a, b : in std\_logic; --Single input
- c : out std\_logic; --Single output
- d : inout std\_logic; -- bidirectional port
- e : buffer std\_logic -- fedback output );

#### end Black\_box;

### **VHDL port declaration (cont.)**



### **VHDL declaration**

| d |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

### **Simple Circuit Description**

```
Library IEEE;
use IEEE.std_logic_1164.all;
```

```
entity AND_gate is
port(
   A, B : in std_logic;
   F : out std_logic
);
end AND_gate;
```

architecture behavioral of AND\_gate is begin F <= A AND B; end behavioral;



### **Simple Gates**

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
```

```
entity simple_gates is
port(
   A : in std_logic;
   B : in std_logic;
   F : out std_logic_vector(1 to 7)
);
end simple_gates;
```

architecture Behavioral of simple\_gates is begin  $F(1) \le NOT A;$  $F(2) \le NOT B;$  $F(3) \le A NAND B;$  $F(4) \le A NOR B;$  $F(5) \le A AND B;$  $F(6) \le A OR B;$  $F(7) \le A XOR B;$ 

end Behavioral;

A  $F_1$ B  $F_2$   $F_2$   $F_3$   $F_4$   $F_4$   $F_5$   $F_6$  $F_7$