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Abstraction Levels
o

e Circuit Level
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Abstraction Levels
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e Gate Level
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Abstraction Levels
o

e Digital System




Digital Systems
-

e A digital system uses discrete values to
represent information for input, processing,
transmission, storage, etc.

e It has several combinational and sequential
blocks working together for carrying out all
these tasks.



Synchronous Digital System
-

e Purely synchronous

e One Trigger Edge Synchronization

e Derived Synchronization.



Purely Synchronous Digital System
c ]

e In a purely-synchronous digital system, all of
Its building sequential machines are
synchronous in a Moore architecture, with a
common clock for all of them, and all its
memory elements are identical.



One Trigger Edge Synchronization
-

e A one trigger edge synchronous system has
a Moore architecture, where the memory
elements respond to the different trigger
edges of a common clock.



Derived Synchronization
-

e A digital system has derived synchronization
when its building states machines are
synchronous in a Moore architecture, and
has multiple clocks derived synchronously
from one master clock.



Asynchronous Digital System
-

e An asynchronous digital system has multiple
clock signals not synchronized by a global
clock.



Microprocessor Architectures
-

e \Von Neumann Architecture

e Harvard Architecture



Von Neumann Architecture
N

e Data and programs are stored together in
memory

e Follows the following pattern

- Fetch: Instructions and necessary data are
obtained from memory.

- Decode: Instructions and data are separated.

- Execute: Instructions are performed, data Is
manipulated, results are stored



Von Neumann Architecture
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Harvard Architecture
N

e Independent memory for data and
Instructions.
e Modified Hardware Architecture:

— Allows words from the instruction memory to be
treated as read-only data.



Instruction Set Architecture (ISA)
c--

e Part of the computer architecture related to
programming

— CISC (Complex Instruction Set Computing)

- RISC (Reduced Instruction Set Computing)



CISC
e

e Each instruction can execute several low-
level operations in a single instruction.

e Instructions might take long time to execute.
- Several memory cycles.



RISC
e

e Execute small instructions in fast way.

e A RISC chip has:
- Fewer transistors dedicated to the core logic.
- General purpose registers.
- Uniform instruction format.



Other ISAs
]

e Very Long Instruction Word (VLW)

— A processor that executes every instruction one
after the other.

e Minimal Instruction Set Computing (MISC)
- Very small number of basic operations.

e Zero Instruction Set Computing (ZISC)
- Based on pattern matching.
- Massively hardwired parallel processing.



Digital Signal Processing in Hardware
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Digital Signal Processor (DSP)
c--

e Vehicle for implementing digital-signal-
processing functions.
—- Real-time processing.
- Separate program and data memories.
- Special Instructions for SIMD.

- Process digital signals converted from analog
signals.

- Provide an analog output from the processed
digital signal.



Application Specific Integrated Circuits
(ASICs)

e Hard-wired arithmetic logic blocks and state
machines.
— Inflexible.
- Hardware design at transistor level.
—- High cost.
— Long time to market.



Multl core DSPs
N

e Very-long-instruction-word engines.

e Great deal of parallelism.

e Gain for each added engine, less 100%.
e Difficult to program.

e Application specific DSP.

e More expensive than ASICs



Programmable Logic Devices (PLDs)
c ]

e Infinitely customizable.

e Silicon physical-design ready for
customization.



Field Programmable Gate Arrays
(FPGAS)

e Array of uncommitted circuits elements.

e Spatial computations.

e End-user programmable.



FPGAs vs ASICs & DSPs
]

FPGAs vs ASICs FPGAs vs Processors
eMore power consumption. | einflexible.

eSlower. eSlower.

el ooser.

eL_ower power consumption.
eCommercially available. efFaster.
eFast time to market. eTighter.




FPGA architecture
N

e Flexible, regular programmable architecture
surrounded by a perimeter of programmable
Input/Output blocks, which are
Interconnected by a hierarchy of routing
channels.



FPGA Internal structure
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FPGA Configurable Logic Blocks
(CLBS)
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FPGA technology
-

e Antifuse:
- Configured by burning a set of fuses.
— Once configured, it can not be altered any more.

e Flash:
— Can be re-programmed several times.

— Non-volatile.

e SRAM:
— Unlimited reprogramming.
- Very fast configuration
— Partial configuration
- Volatile.



Hardware Description Languages
(HDLS)

e Design tool for describing digital systems.

CUPL (Universal compiler for programmable
logic, Logical Devices).

ABEL (Advanced Boolean Expression Language,
Data I/O corporation).

Verilog (VERIfy LOGic, IEEE standard 1364-
2001).

VHDL (Very high speed integrated circuit
Hardware Description Language, IEEE standard
1076-1993)



VHDL
e

e Initiated in 1981 by the US DoD.
e Language with wide range capability

ndependent of technology or design
methodology.

Development of baseline language (1983-85).
All rights transferred to IEEE (1986).
Publication of the IEEE standard (1987)

Revised Standard named VHDL 1076-1993
(1994)




VHDL features
N

e Is concurrent I.e. all operations are executed
simultaneously.

C-code segment X=2;
X=2; y=8;
y=3*X+2; z=10;
Z=X+Y;

VHDL-description x<=1’;

segment y<=1";

X<=Z, z<="17,
y<=1;
z<=Y XOR ‘0’;




VHDL features (cont.)

e Synthesis depends on the used structures.
l.e. the final implementation depends on the
Inferred structure.
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VHDL features (cont.)
-

e Highly hierarchical.
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VHDL elements
N

1. Library declarations.

2. Port declarations.

3. Architecture description.
4. Test Bench.



VHDL library declaration.
-

Library IEEE;
use IEEE.std logic_1164.all;

use IEEE.std logic_arith.all;

use IEEE.std _logic_unsigned.all;




VHDL port declaration
-

entity Black box is
port(
a, b :in std _logic; --Single input
C . outstd logic; --Single output
d :inout std logic; -- bidirectional port
e  buffer std _logic -- fedback output
);

end Black box;



VHDL port declaration (cont.)
-

d ——» ——-C

—3 Black >
Box




VHDL declaration
N

Valid Invalid
A 8
B5 %
Counter_10 R 5
AND gate 1 Gate
Logic_System XOR
S32C5 S32 C5




Simple Circuit Description

Library IEEE;
use IEEE.std logic_1164.all;

entity AND _gate is

port(
A, B :in std_logic; I
F :outstd logic A

); B—

end AND_gate;

architecture behavioral of AND gate is
begin

F <= A AND B;
end behavioral;



Simple Gates
-

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity simple_gates is
port(

A :in std_logic;

B :in std_logic;

F : out std_logic_vector(1 to 7)
);

end simple_gates;

architecture Behavioral of simple_gates is
begin

F(1) <= NOT A;

F(2) <= NOT B;

F(3) <= A NAND B;

F(4) <= ANOR B;

F(5) <= A AND B;

F(6) <= A OR B;

F(7) <= A XOR B;
end Behavioral;




